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Abstract. The initiation of the transcription process in DNA is linked with the dynamics originating from
structural distortions of the double helix. It was proposed that such deformations might be caused by a
‘hit and run’ mechanism which is associated with the temporary attachment of some proteins, constituting
activator factors, to regions of the DNA leaving it in deformed shape. In a nonlinear model approach
we demonstrate that there exist such structural distortions of the double helix that appropriately serve
to activate the formation of open regions in the form of oscillating bubble. The structure of the double
helix form of DNA is modeled by a oscillator network model. We show that the underlying nonlinear
dynamics supports localized solutions in the form of radial breathers and kink-shaped angular patterns.
It is demonstrated that the radial breathers, which are attributed to localized H-bond deformations of the
DNA molecule, move coherently along the double chain. We further illustrate that the breathers sustain
the impact of heterogeneity due to the genetic code inscribed in DNA. Moreover, mobility of the breathers
is also preserved when, the positions of the nucleotides are (randomly) modulated through fluctuational
modes of the chemical environment, and energy dissipation due to non-elasticity damping of the motion
of the nucleotides is incorporated. The amplitudes, oscillation periods and spatial extensions of the radial
breathers resembles those found for the oscillating bubbles in real DNA molecules.

PACS. 87.15.-v Biomolecules: structure and physical properties – 63.20.Kr Phonon-electron and
phonon-phonon interactions – 63.20.Ry Anharmonic lattice modes

The dynamical processes underlying biological activities of
DNA are often not fully understood. A prominent exam-
ple is represented by the transcription process for which
the coding sequence on a DNA strand has to be made
accessible to the RNA polymerase. This requests that hy-
drogen bonds connecting the two strands have to be (tem-
porarily) broken so that the DNA strands separate. The
open complex of DNA encloses 15−20 broken base pairs
and is called the transcription bubble [1]. The formation
of the transcription bubble and the initiation of its travel
along the chain is associated with the action of proteins
binding to specific regions of the DNA double helix (the
promotor). In this context a ‘hit and run’ mechanism was
suggested [2] on the basis of which the binding protein,
operating as an activator factor, modifies structurally a
region of the DNA for a short time and leaves the bind-
ing sites afterwards. In this way the activator factor might
cause suitable local structural deformations that form the
starting point for the creation of the transcription bub-
ble. In addition, the latter should be able to move along
the chain traversing so the genetic code. With the current
study we aim to mimic the dynamics of the formation
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process of the opening complex in DNA originating from
structural deformations. Regarding the opening process
much attention has been paid to nonlinear models of the
double helix [3,13]. The asset of utilizing nonlinear dynam-
ics lies in the fact that there exist localized solutions, such
as solitons and breathers, which can explain the strong lo-
calization of energy and the propagation of nonlinear ex-
citations along the chain during the transcription process.
In fact, for the Bishop-Peyrard (PB) model and its succes-
sors [6,9–12] moving localized excitations (breathers) have
been found which reflect successfully some typical proper-
ties of the DNA opening dynamics such as the magnitude
of the amplitudes and the time scale of the oscillating
‘bubble’ occurring prior to thermal denaturation.

We focus our interest on the initiation of the bubble
formation process associated with initial structural de-
formations of the double helix. Our aim is to show that
there exist indeed appropriate distortions constituting the
source of dynamical processes such that nonlinear excita-
tions develop matching the features of the experimentally
observed oscillating bubbles. Such oscillating bubbles with
their temporarily extended but yet unbroken H-bonds rep-
resent a first stage towards the creation of the transcrip-
tion bubble for which in a region of the DNA double helix
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the H-bonds get broken so that the two strands are sepa-
rated. The propagation of the transcription bubble along
the DNA (in unison with the RNA-polymerase) renders
the coding sequence of the gene accessible for the copy
process.

In order to model the bubble formation and propaga-
tion in DNA the corresponding model incorporates the ba-
sic geometrical features of the Watson-Crick double helix.
Following the approach in [9,10], we regard the double-
stranded DNA as a network of coupled oscillators whose
dynamics involves essential microscopic degrees of freedom
of DNA. The main merit of such network model is that it
is sufficiently complex to describe the mechanical behav-
ior on the microscopic scale relevant for biomolecular pro-
cesses. On the other hand, focusing on the most pertinent
structural elements of the molecule, the model is of not
too cumbersome form that the study of the correspond-
ing dynamics is possible with acceptable computational
efforts. Each of the oscillators of the network model rep-
resents a nucleotide. We abstract from the inner dynam-
ical degrees of freedom of the nucleotides treating them
as single nondeformable entities. This is justified on the
grounds that the small-amplitude vibrational motions of
the individual atoms are much faster than the relatively
large-amplitude motions of the atom groups constituting
the nucleotides [14]. A nucleotide is composed of a sugar,
a phosphate and a base. The sugar-phosphate groups of
neighboring nucleotides on the same strand are linked
via covalent bonds establishing the rigid backbone to the
strand. There is a base attached to every sugar. Two bases
on opposite strands are linked via hydrogen bonds holding
the two strands of DNA together.

The equilibrium positions of our DNA oscillator net-
work model reproduce the geometrical features of B-DNA
(see also [9,10,13]). The z-axis of the coordinate system
coincides with the central helix axis. The base pairs are
arranged in planes perpendicular to the central helix axis
and the vertical distance between two consecutive planes
is given by h. The equilibrium positions of the nucleotides
are denoted by the coordinates x

(0)
n,i, y

(0)
n,i and z

(0)
n,i . The in-

dex pair (n, i) labels the nth base on the ith strand with
i = 1, 2 and 1 � n � N , where N is the number of base
pairs considered. The equilibrium distance between two
bases within a base pair, d0, is determined by

d0 =
√

( dx
n )2 + ( dy

n )2 , (1)

where dx
n = x

(0)
n,1 − x

(0)
n,2 and dy

n = y
(0)
n,1 − y

(0)
n,2 are the

projections of the line connecting the two bases on the
x, y-axes of the coordinate system.

Variations of the equilibrium value d0 caused by dis-
placements of the bases, xn,i, yn,i and zn,i, from their
equilibrium positions are given by

dn =√
(dx

n + xn,1 − xn,2)
2+(dy

n + yn,1 − yn,2)
2+(zn,1 − zn,2)

2

− d0. (2)

The distance variable dn(t) is hereafter also referred to as
the radial variable because dn(t)/2 represents actually the
local helix radius. Each base is rotated around the central
axis such that the relative twist between two consecutive
base pairs is given by an angle θ0. For later use we intro-
duce the quantity

θn = arctan
dx

n + xn,1 − xn,2

dy
n + yn,1 − yn,2

+ 2mπ , (3)

as the angle between the x-axis (as the reference direction)
and the line connecting two (displaced) bases of a base pair
measuring the alignment of the associated H-bridge. m is
an integer to assure monotonicity of θn with respect to n.

The equilibrium distance between two adjacent bases
on the same strand is given by

l0 =

√
h2 +

(
x

(0)
n,i − x

(0)
n−1,i

)2

+
(

y
(0)
n,i − y

(0)
n−1,i

)2

, (4)

and deviations from l0 are determined by

ln,i =
{

h2 +
(
Lx

n,i + xn,i − xn−1,i

)2

+
(
Ly

n,i + yn,i − yn−1,i

)2 + (h + zn,i − zn−1,i)
2
}1/2

− l0.

(5)

The hydrogen bonds within a base pair are modeled
typically by a Morse potential

Uh = Dn

[
exp

(
−α

2
dn

)
− 1

]2

, (6)

where the vibrations of dn describe dynamical deviations
of the hydrogen bonds from their equilibrium lengths d0.
The site-dependent depth of the Morse potential, Dn,
depends on the number of involved hydrogen bonds for
the two different pairings in DNA, namely the G-C and
the A-T pairs. The former pair includes three hydrogen
bonds while the latter includes only two. α is the range
parameter.

The potential of the comparatively strong and rigid
covalent bonds between the nucleotides n and n − 1 on
the ith strand is given by

Uc =
K

2
l2n,i, (7)

where K is the elasticity coefficient.
With a further potential term, Vs, stacking effects are

taken into account which impede that, due to the back-
bone rigidity, one base slides over another [1]. For the form
of Vs we adopt the one used in [12]

Vs =
S

2
(dn,i − dn−1,i)2. (8)

The presumably small longitudinal helix deformations
can be modeled by a harmonic elasticity potential term
given by

Vl =
C

2
(zn,i − zn−1,i)2. (9)
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The kinetic energy of a nucleotide is determined by

Ekin =
1

2m

[ (
p
(x)
n,i

)2

+
(
p
(y)
n,i

)2

+
(
p
(z)
n,i

)2
]

, (10)

where m is the mass and p
(x,y,z)
n,i denote the (x, y, z)-

component of the momentum.
Our model Hamiltonian is then given by

H =
∑

i=1,2

N∑
n=1

En,i , (11)

with the on-site energy

En,i = Ekin + Vc + Vh + Vl + Vs , (12)

and the summation in (11) is performed over all nu-
cleotides.

As the influence of the fluctuational vibrations of the
aqueous environs on the vibrational dynamics of the DNA
double-helix is concerned, it is simply expressed in addi-
tional terms in the Hamiltonian

Henv =
∑

i=1,2

N∑
n=1

(
γ

(x)
n,i cos(ω(x)

n,i t + δ
(x)
n,i )xn,i

)

+
∑

i=1,2

N∑
n=1

(
γ

(y)
n,i cos(ω(y)

n,i t + δ
(y)
n,i ) yn,i

)

+
∑

i=1,2

N∑
n=1

(
γ

(z)
n,i cos(ω(z)

n,i t + δ
(z)
n,i) zn,i

)
, (13)

including temporal (harmonic) modulations of the po-
sitions of the nucleotides. γ

(x,y,z)
n,i are the couplings

strengths, ω
(x,y,z)
n,i and δ

(x,y,z)
n,i are the frequencies and

phases. Incoherence of the modulation of the positions of
the nucleotides induced by the fluctuations of the solvent
is taken into account by site-depending coupling strengths,
frequencies and phases. Particularly, the frequencies are
arranged around a mean value and are simulated as inde-
pendent random quantities distributed in an interval [ ω̄−
∆ω, ω̄ + ∆ω ] and the arbitrary phases are randomly dis-
tributed in the interval [0, 2π). Typical frequencies of the
environmental modes are of the order of ω̄ ≤ 10−11 s−1,
that is at least one order of magnitude below the charac-
teristic frequencies of H-bonds vibrations [15]. Moreover,
the frequency range of the modes is also governed by the
temperature of the system, viz. the DNA-chain and its
aqueous surrounding, due to an Arrhenius-type tempera-
ture dependence, ωT = ω exp(−Ea/kbT ) [15] with activa-
tion energy � 6.9 kcal/mol and prefactor of ∼0.6 THz [15].

With regard to specific parameter values we note that
the geometrical parameters of the equilibrium configura-
tion are well known [1]. The rotation angle for the twisted
configuration is θ0 = 36◦, the distance between base pair
planes is h = 3.4 Å, and the inter-base distance (the di-
ameter of the helix) is d0 = 20 Å. For the average mass
of one nucleotide we use M = 4.982 × 10−25 kg. No-
tice that the mass difference between the two possible

base pairs in DNA is negligible whereas with respect to
the H-bond coupling strength the two pairs are quite dis-
tinct, viz. the G-C bases couple with as nearly twice the
strength as the A-T bases. In our model the DNA hetero-
geneity (the arbitrary base pair sequence) is reflected in
randomly distributed bi-valued H-bond coupling strengths
D0 (for A-T) and D1 = 2 D0 (for G-C). Consequently, due
to the aperiodic arrangement of the two different base-
pairs, coding the genetic information, the DNA chain is
of A-B-disorder type. Following Barbi et al. [9] we set
α = 4.45 Å−1, D0 = 0.04 eV, and K = 1.0 eV Å−2. Con-
cerning the parameters C and S there is little experimen-
tal evidence from which an estimate of them could be in-
ferred. In [12] the value of the parameter S has been set to
S = 2K which we adopt here. (Alternatively, in a model
approach of DNA denaturation dynamics [10] the parame-
ters S and C were specified to fit the melting temperature
of certain DNA polymers.) A plausible value for C is given
by C = S/10 [13].

When the time is scaled as t → √
D0α2/m t one passes

to a dimensionless formulation with quantities:

x̃n,i = αxn,i, ỹn,i = αyn,i, z̃n,i = αzn,i (14)

p̃
(x)
n,i =

p
(x)
n,i√

mD0

, p̃
(y)
n,i =

p
(y)
n,i√

mD0

, p̃
(z)
n,i =

p
(z)
n,i√

mD0

, (15)

D̃1 =
D1

D0
, C̃ =

C

α2D0
, K̃ =

K

α2D0
, S̃ =

S

α2D0
, (16)

d̃n = α dn, r̃0 = α r0, h̃ = α h, (17)

γ̃
(x)
n,i =

γ
(x)
n,i

αD
, γ̃

(y)
n,i =

γ
(y)
n,i

αD
, γ̃

(z)
n,i =

γ
(z)
n,i

αD
, (18)

ω̃
(x)
n,i =

ω
(x)
n,i√

D0α2/m
, ω̃

(y)
n,i =

ω
(y)
n,i√

D0α2/m
,

ω̃
(z)
n,i =

ω
(z)
n,i√

D0α2/m
. (19)

Subsequently, the tildes are dropped.

The equations of motion read as

ẋn,i = p
(x)
n,i , (20)

ṗ
(x)
n,i = 2Dn [ exp(−dn) − 1 ] exp(−dn)

∂dn

∂xn,i

− 2K

[
ln,i

∂ln,i

∂xn,i
+ ln+1,i

∂ln+1,i

∂xn,i

]

+ S [ dn+1 − 2 dn + dn−1 ]
∂dn

∂xn,i
− βp

(x)
n,i

− γ
(x)
n,i cos

(
ω

(x)
n,i t + δ

(x)
n,i

)
, (21)

ẏn,i = p
(y)
n,i , (22)
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ṗ
(y)
n,i = 2Dn [ exp(−dn) − 1 ] exp(−dn)

∂dn

∂yn,i

− 2K

[
ln,i

∂ln,i

∂yn,i
+ ln+1,i

∂ln+1,i

∂yn,i

]

+ S [ dn+1 − 2 dn + dn−1 ]
∂dn

∂yn,i
− βp

(y)
n,i

− γ
(y)
n,i cos

(
ω

(y)
n,i t + δ

(y)
n,i

)
, (23)

żn,i = p
(z)
n,i , (24)

ṗ
(z)
n,i = 2Dn [ exp(−dn) − 1 ] exp(−dn)

∂dn

∂zn,i

− 2K

[
ln,i

∂ln,i

∂zn,i
+ ln+1,i

∂ln+1,i

∂zn,i

]

+ S [ dn+1 − 2 dn + dn−1 ]
∂dn

∂zn,i
− βp

(z)
n,i

− γ
(z)
n,i cos

(
ω

(z)
n,i t + δ

(z)
n,i

)
− C ( 2 zn,i − zn+1,i − zn−1,i ) , (25)

with the derivatives

∂dn

∂xn,i
=

(−1)i+1 (dx
n + xn,1 − xn,2)

dn + d0
, (26)

∂ln,i

∂xn,i
=

Lx + xn,i − xn−1,i

ln,i + l0
, (27)

and the equivalent expressions for ∂dn/∂yn,i, ∂ln,i/∂yn,i,
∂dn/∂zn,i and ∂ln,i/∂zn,i.

For a more realistic model of the vibrational dynamics
of DNA we consider also the effect of friction, incorporat-
ing energy dissipation due to non-elasticity caused by the
viscosity of the aqueous environs consisting of water and a
variety of salts, which is described by the additional damp-
ing terms −βp

(x,y,z)
n,i on the r.h.s. of equations (21, 23)

and (25) and β is the damping strength, viz. the decay
rate. The interaction between water and the nucleotides
determining mainly the decay rate (or equivalently the
life time of bond vibrations) is influenced generally by the
amount of water around the DNA molecule, the ionic con-
centration of the solvent and temperature [15,16]. (Typ-
ically, the decay rate varies with temperature according
to an Arrhenius-law, β = β0 exp[−E/kbT ].) With ‘life
times’ on time scales ranging from 10 ps to 100 ps, be-
ing times which amount to hundreds of periods of bond
vibrations in DNA, the damping constant lies in the range
β = [0.01, 0.1]× 1012 s−1.

The values of the scaled parameters are given by K =
0.683, r0 = 44.50, h = 15.13 and l0 = 31.39. One time unit
of the scaled time corresponds to 0.198 ps of the physical
time.

We study now the formation and propagation of bub-
bles in DNA. Concerning the formation process our aim
is to demonstrate that there exist deformations of the he-
lix structure which represent the starting point for the
creation of H-bridge breather solutions (extending over
15−20 base pairs) reproducing the oscillating ‘bubbles’
observed for the DNA-opening process [12].

Fig. 1. The unperturbed case: Spatio-temporal pattern of the
inter-base distance dn(t) in Å. For better illustration only a
segment of the DNA lattice is shown. Parameters: C = 0.126,

K = 0.63, S = 1.26, D0 = 1, D1 = 2 and γ
(x,y,z)
n,i = δ

(x,y,z)
n,i = 0.

The dynamics of the opening process is dominated by
the displacements of the bases in radial direction whose
amplitudes typically exceed those of the angular displace-
ments by at least one order of magnitude which reflects
the backbone rigidity preventing larger twist deforma-
tions of the double helix [7]. Therefore, for the sake of
simplicity, we assume that initially a number of consec-
utive sites in the center of the DNA lattice are exerted
to forces acting in radial direction such that in this re-
gion the molecule experiences H-bond compressions. The
distortion might be inflicted by the aforementioned ‘hit
and run’ mechanism according to which a segment of the
DNA is modulated structurally by the temporary action of
some protein. These deformations are supposedly aligned
along the orientation of the hydrogen bonds. Clearly, the
distortions of the hydrogen bonds within a base pair are
related with deformations of the covalent bonds of the
adjacent region of the phosphate backbone. However, for
the considered initial radial compressions of the order of
−0.30 Å� dn � −0.1 Å, the resulting deformations of the
covalent bonds are inferior to the H-bond compressions.

We integrated the set of coupled equations (20–25)
with a fourth-order Runge-Kutta method. For the sim-
ulation the DNA lattice consists of 400 sites and open
boundary conditions were imposed. Before we embark on
a study of the DNA dynamics including the coupling to
environmental modes we investigate the unperturbed case
for which the influence of the environmental modes and
damping effects are discarded, i.e. γ

(x,y,z)
n,i = 0 and β = 0.

In Figure 1 we depict the spatio-temporal evolution of
the distances, dn(t), between two bases of a base pair,
which measures the variation of the length of the cor-
responding hydrogen bond expressed in Å. Initially, the
twenty excited lattice sites have equally reduced radial
amplitude yielding a localized rectangular pattern. Out
of this non-equilibrium configuration, processes of energy
redistribution set on. Most importantly, the vast ma-
jority of the excitation energy remains contained in lo-
calized radial patterns despite the dispersion of a small
amount of excitation energy in the form of phonons in
the rest of the DNA lattice. We observe that the localized



D. Hennig: Formation and propagation of oscillating bubbles in DNA initiated by structural distortions 395

Fig. 2. The unperturbed case: Spatio-temporal pattern of the
twist angle θn(t)−nθ0 expressed in rad. Parameters as in Fig-
ure 1.

rectangular radial pattern is not preserved but gives way
to the creation of new localized radial amplitude patterns.
In fact, very rapidly two radial breathers are formed in the
central region of the DNA lattice. These breathers even
start to move in opposite directions in coherent fashion.
Note that the stretching of a base pair distance is larger
than the compression characteristic for the evolution in a
Morse potential (see also [9]). Both breathers have nearly
the same width comprising ten base pairs. However, the
radial breather propagating towards the left end of the
DNA lattice possesses larger amplitudes and moves faster
than its counterpart traveling to the right.

In Figure 2 it is shown that the associated pattern of
the deviations of the twist angles from their equilibrium
values, θn(t)−nθ0 expressed in rad, being initially overall
zero, develops a local kink-like structure. Its plateaus con-
tinuously extend in either direction away from the central
base pairs. In the course of time more and more base pairs
become subject to angle deformations leading to a progres-
sive untwisting of the helix. This untwisting of the heli-
coidal helix structure results from the coupling between
the radial and the backbone degrees of freedom due to
geometrical constraints and is typical for the DNA open-
ing dynamics [9]. In contrast to the periodically oscillating
pattern of the radial variable dn(t), corresponding to alter-
nate stretchings and compressings of the hydrogen bonds,
the torsional deformations θn(t) − nθ0 adjust to a static
deformation pattern.

With concern to the initial deformation pattern we
remark that the dynamics does not change qualitatively
when in addition to the radial compressions also angular
deformations, being relevantly kink-shaped, are initially
involved. Moreover, the initial radial compression pattern
has not necessarily to be rectangular and also bell-shaped
profiles having broad enough width lead to the formation
of radial breathers that travel along the chain.

Taking into account the impact of the environmental
modes and damping effects, i.e. β �= 0 and γ

(x,y,z)
n,i �= 0,

we start our investigations with the case of coherent driv-
ing for which the frequencies and driving strengths have
constant values γ

(x,y,z)
n,i = γ and ω

(x,y,z)
n,i = ω respectively

Fig. 3. Time-evolution of the breather center. Assignment of
the curves: (i) Periodic case with parameters as in Figure 1

except for γ
(x,y,z)
n,i = 0.01, ω

(x,y,z)
n,i = 0.1 and δ = 0.001. (ii) Pe-

riodic case with parameters as in (i) except for decreased fre-

quency ω
(x,y,z)
n,i = 0.08. (iii) Unperturbed case with parameters

as in Figure 1. (iv) Random case. Parameters as in (i) but with
randomly distributed frequencies [ ω̄−∆ω, ω̄+∆ω ] with mean
value ω̄ = 0.1 and interval width ∆ω = 0.01. Additionally the

phases δ
(x,y,z)
n,i are randomly distributed in the interval [0, 2π).

(hereafter referred to as the periodic case). In addition
there is no phase mismatch, i.e. δ

(x,y,z)
n,i = 0. There arise

at least two interesting questions; namely, will there still
be radial breather solutions, and second, if so, will these
breathers still travel coherently along the DNA lattice un-
der the combined impact of driving and damping?

The results regarding the breather mobility are appro-
priately reflected in the time-evolution of the first momen-
tum of the energy distribution given by

n̄(t) =
∑

i=1,2

N∑
n=1

(nc − n)En,i(t), (28)

and the on-site energy En,i is defined in equation (12).
This quantity describes the temporal behavior of the

position(s) of the breather center(s) and hence, measures
the mobility of the breathers. In general, the damped and
periodically driven system behaves qualitatively like the
formerly discussed unperturbed system, i.e. two counter-
propagating breathers are produced. In addition, as the
curves in Figure 3 reveal in the periodic cases (curves (i)
and (ii)) the motion of the breather center gets periodi-
cally modulated by the driving modes indicated by the os-
cillations of n̄(t) around a straight line the slope of which
determines the mean breather velocity.

Shown is the breather center evolution towards the left
end of the DNA lattice. The corresponding plot of n̄(t) for
the right-wards moving breathers exhibits equivalent fea-
tures except for the lower amplitudes and velocities. Al-
though in the periodic cases the path traveled over by the
breather is not solely unidirectional the motion is, nev-
ertheless, effectively directed towards the left end of the
DNA lattice. The maximal amplitude of the oscillations
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Fig. 4. Time-evolution of the (left) breather center in the
damped and random case. Parameters as for the curve (iv) in
Figure 3 except for varying damping strength β as indicated
in the picture.

of the breather center diminishes with rising driving fre-
quency ω. When high enough driving frequency are cho-
sen the motion of the breather center is presented by a
straight line (apart from small-amplitude oscillatory de-
viations) restoring the unidirectional and straightforward
character of the breather motion of the unperturbed case
(curve (iii)).

For a more realistic study we assume that the fre-
quencies of the fluctuating environmental modes are site-
dependent leading to incoherent modulations of the po-
sitions of the nucleotides. More precisely, the frequencies
are arranged around a mean value ω̄ (the indices are omit-
ted) and are simulated as random quantities distributed
in the interval [ω̄ − ∆ω, ω̄ + ∆ω]. Moreover, de-phasing
of the environmental modes is assured by randomly dis-
tributed phases δ ∈ [ 0, 2π). Remarkably, in such random
cases the system resembles virtually the behavior of the
unperturbed system in the sense that the two created
breathers propagate directedly and straightly in opposite
directions towards either ends of the DNA lattice. From
curves (iii) and (iv) in Figure 3 we infer that the breather
in the random case moves effectively with slightly reduced
velocity compared with its unperturbed counterpart. As
the dependence on the random frequencies is concerned
we observe no significant differences between the breather
dynamics when the mean frequency ω̄ is varied in the rele-
vant range of (0, 0.1]. Consequently, the breather velocity,
width and amplitude appear to be unaffected by frequency
changes. However, raising of the damping strength β has
profound impact on the mobility of the breathers. In Fig-
ure 4 we show the time evolution of the breather center
for three different values of β. Apparently, the larger β
the less is the mobility of the breathers and for overcrit-
ical β � 0.01 the motion towards the end(s) of the DNA
lattice is inhibited by too strong non-elasticity. Appar-
ently, then the energy losses cannot be compensated by
the energy input provided by the external modes.

In order to quantify the degree of energy localization
in the breathers we invoke the energetic partition number

Fig. 5. Temporal behavior of the partition number. Periodic
case (full line) and random case (dashed line) with parameters
as for the curves (i) and (iv) in Figure 3 respectively.

which is determined by

P (t) =
(
∑

i=1,2

∑N
n=1 En,i)2∑

i=1,2

∑N
n=1 E2

n,i

. (29)

The breather is completely confined at a single site if
P = 1 and is uniformly extended over the lattice if P is
of the order N , that is the number of lattice sites. Hence,
P measures how many sites are excited to contribute to
the radial breather pattern. We find that for the moving
breathers in the periodic case the participation number
grows in an initial interval and performs afterwards oscilla-
tions around a mean value corresponding to an increase of
P (t) typically by ∼20%. Distinctly, in the random case the
partition number remains close to its initial value through-
out the travel of the breathers along the DNA lattice (see
Fig. 5). This points to improved energy storing capabili-
ties in the random case compared with the periodic case.
Moreover, it manifests how robust the localized amplitude
patterns in the vibrational dynamics of DNA are with re-
gard to random driving and friction. Equivalent results are
obtained for the maintenance of localization in the case of
the right-wards moving breather. Relating other features
of the left and right breathers we note that in general the
amplitudes of the former are by a factor of ∼1/3 higher
than the ones of the latter and the right breathers prop-
agate with velocities being reduced by ∼20% compared
with those of their left counterparts.

For further illustration of the bubble activation pro-
cess we depict in Figure 6 the velocity of the left-wards
moving breather as a function of the initial compression
amplitude dn(0) (in the figure given with reversed sign)
for a number of twenty distorted H-bonds. We investi-
gated the dynamics including damping and random fre-
quencies as well as random phases (details are given in
the figure caption). Apparently, the stronger the H-bonds
are initially compressed the faster travels the correspond-
ing breather. The influence of the extension of the ini-
tially distorted DNA segment on the breather mobility
is illustrated in Figure 7 showing the final position (base
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Fig. 6. Velocity of the left breathers (in Å/ps) as a function
of the initial radial distortion |dn(0)| when twenty consecutive
H-bonds are compressed. The frequencies of the driving modes
are randomly distributed, [ ω̄ −∆ω, ω̄ + ∆ω ], with mean value

ω̄ = 0.1 and interval width ∆ω = 0.001. The phases δ
(x,y,z)
n,i are

randomly distributed in the interval [0, 2π) and the damping
parameter is β = 0.001.

pair) of the left breather as a function of the length of
the initially compressed DNA region, viz. the number of
distorted H-bonds with reductions dn(0) = −0.25 Å. In-
terestingly, the broader the initial deformation radial pat-
tern is the faster the localized breather related with the
structure of the compressed radii propagates. We remark
that the (mean) extension of the left-ward and right-ward
moving breathers is virtually equal for both. In fact, ei-
ther breather comprises (at most) half the number of the
initially excited sites (compressed H-bonds) and we found
that the broadest breathers comprise 23 base pairs which
is in good agreement with the observation made for DNA,
namely when enzymes interact with the promoter sites
over a region of 50 base pairs the eventually formed open
complex involves only 20 base pairs. The amplitudes of
these breathers range from 0.1 Å to 0.3 Å which is of the
order of the amplitudes of the experimentally observed
oscillating bubbles. In addition, the frequencies of the
breathers resemble those of the oscillating bubbles which
are of the order of 7−21 THz.

In conclusion, we observed that out of an initial non-
equilibrium situation, for which the hydrogen bonds of a
segment of the DNA lattice have been compressed two
counter-propagating breathers develop in the radial dis-
placement variables. The shape of these breathers repro-
duces the oscillating bubbles observed to precede thermal
denaturation of DNA. In particular a breather oscillates
with periods in the range 0.3−0.8 ps and possesses average
spatial extension over 10−20 base pairs and maximal am-
plitudes of the order of ∼0.3 Å. The breathers can combine
and grow in amplitude and contribute so to the creation
of the denaturation bubble.

Due to the coupling between the radial and the an-
gular motions the angular displacement variables adopt a
kink-like structure associated with unwinding of the he-
lix. We demonstrated that the radial breathers sustain

Fig. 7. Final position (base pair) of the left breather in de-
pendence of the length of the initially compressed DNA region,
viz. the number of distorted H-bonds. Initial compression am-
plitude dn(0) = −0.25 Å.

the combined impact of fluctuating environmental modes,
modulating the positions of the nucleotides, and damping
caused by non-elasticity effects. Remarkably, the moving
breathers prove to be insensitive to DNA heterogeneity.
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